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ADDENDUM 

Some Clebsch-Gordan type linearisation relations and other 
polynomial expansions associated with a class of generalised 
multiple hypergeometric series arising in physical and quantum 
chemical applications 

H M Srivastava 
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, 
Canada 

Received 24 November 1987, in final form 10 June 1988 

Abstract. In the present sequel to Srivastava’s work, a number of new expansions (in series 
of various classes of hypergeometric polynomials) are derived for the general multivariable 
hypergeometric function which provides an interesting and useful unification of numerous 
families of hypergeometric functions of one, two or more variables encountered naturally 
in a wide variety of physical and quantum chemical applications. By suitably specialising 
some of these polynomial expansions, Clebsch-Gordan type linearisation relations are 
deduced for the products of several Jacobi or Laguerre polynomials. It is also shown how 
one of the linearisation relations involving Laguerre polynomials, presented here, would 
yield the corrected (and modified) versions of a couple of results given recently by 
Niukkanen. 

1. Introduction 

Hypergeometric series (and hypergeometric polynomials) in one and more variables 
arise naturally and rather frequently in a wide variety of problems in theoretical physics 
and applied mathematics, and indeed also in engineering sciences, statistics and 
operations research (see, for examples, Srivastava and Karlsson (1985, 0 1.7) and the 
various references therein). In fact, a considerable field of physical and quantum 
mechanical situations (such as Schrodinger’s wave mechanics) lead naturally to such 
hypergeometric polynomials as the Bessel polynomials y,,(x, a, p ) ,  and the classical 
orthogonal polynomials including, for example, the Hermite polynomials H,, (x), the 
Jacobi polynomials P?,’)(x)  and the Laguerre polynomials Ly’(x), and also to such 
special cases of the Jacobi polynomials as the Gegenbauer (or ultraspherical) poly- 
nomials C,”(x), the Legendre polynomials p,,(~) and the Tchebycheff polynomials (of 
the first and second kinds) T,,(x)  and U,(x). Since 

y,,(x, a, p )  = .!( -;)“L;--(!) 

and 

H2n+E(X) = ( - l ) n 2 * n + E . ! X P L ~ - ” 2 ) ( X 2 )  ~ = O o r l  (2) 
all of the aforementioned orthogonal polynomials are easily recoverable from the 
classical Jacobi and Laguerre polynomials. The Jacobi and Laguerre polynomials also 
play a significant role in approximate variational solutions of complex many-electron 
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systems; indeed, in such variational methods, the basis functions are quite frequently 
connected with these two classes of orthogonal polynomials (for example, rotator 
functions or the Wigner D functions via the Jacobi polynomials, and hydrogen-like 
functions via the Laguerre polynomials). 

For any two given sequences of polynomials { p n ( x ) } ~ = ,  and { q n ( x ) } ; = , ,  encountered 
(for example) in quantum mechanical applications, it is often convenient (and, some- 
times, necessary) to express the product p , ( x ) p , ( x )  as a linear combination of the 
polynomials p , ( x )  or q , ( x ) ,  that is, to make use of a linearisation relation of the 
Clebsch-Gordan type: 

or of the (modified) Clebsch-Gordan type: 

Much more general linearisation relations than those characterised by (3) and (4) 
above (involving, for example, the products of three or more Jacobi or Laguerre 
polynomials) are becoming increasingly important in atomic and nuclear shell theories. 
In particular, the hydrogen-like functions (or, equivalently, the Laguerre polynomials) 
have been frequently encountered in recent years as perspective basis functions for 
variational calculations of molecular electron wavefunctions. With this point in view, 
Niukkanen (1985) developed a linearisation relation for the product 

tkL',q,)(Xlt) .  . . L',4;'(xnt) 

and discussed a number of particular cases of practical interest. For non-negative 
integer values of the parameter k (and this is how k is implicitly constrained in 
Niukkanen's work (Niukkanen 1985, p 1401, line 3)), the additional factor t k  in ( 5 )  
seems to serve no purpose whatsoever, since 

t k  = (-l)kk!Lk-k)(t) k = 0, 1 , 2 , .  . . (6) 

which incidentally follows readily from a familiar functional relationship (e.g. Szego 
1975, p 102, equation (5.2.1)) between Laguerre polynomials of orders k and -k. 

The main object of the present paper is to show how linearisation relations for 
polynomial products like those in ( 5 ) ,  but with unrestricted k, would result rather 
systematically from a number of substantially more general expansion formulae (in 
series of various classes of generalised hypergeometric polynomials) for the general 
multivariable hypergeometric function: 
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studied recently by Niukkanen (1983,1984) and Srivastava (1985a, b, 1987); here (A),,, 
denotes the Pochhammer symbol given by the r-function quotient 

T(A + m) 
r(A 1 

and, for (absolute) convergence of the multiple hypergeometric series in (7), 

1 + 4 0 + q k  -pO-pk Z! 0 k =  1, .  . . , n (8) 

it being understood that the equality in (8) holds true provided that, in addition, we 
have either 

Po' 40 and / x l / ' / ( P o - q o ) + .  . . + / x , I ' / ( p o - q o )  < 1 (9) 

and that, under certain parametric constraints, the multiple hypergeometric series in 
(7) would converge also when 

xk = *l k =  1, .  . . , n (11) 
together, of course, with the equality in (8). (See, for example, Srivastava (1987) for 
a number of other useful notations, conventions and definitions which will be employed 
throughout this paper.) 

2. Polynomial expansions and linearisation relations 

For a (real or complex) parameter p, let us begin by introducing three classes of 
hypergeometric polynomials defined by 

and 

where m is a non-negative integer and the other parameters are unrestricted (in general), 
and, by analogy with the abbreviations implied in the definition (7), 

c = ( c I , .  . . , c r )  d = ( d ' ,  . . . ,  d S )  (15) 

so that c and d are vectors with dimensions r and s, respectively (see, for generalised 
hypergeometric pFq notation, Srivastava and Karlsson (1985, p 19, equation 1.2(23) 
and following). Then, from the work of Srivastava and Panda (1974, 1976) containing 
several general classes of polynomial expansions for multivariable functions defined 
by multiple series or multiple Mellin-Barnes type contour integrals, it is not difficult 
to derive the following expansions for the generalised multiple hypergeometric function 
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p + l , c + p , u o :  a , ;  . . . ;  a,; 
p - m + 1,  A + p + m + 1 ,  d + p, bo: bl; . . . ; b,; x1, * * , x, 

(16) ' 

1 + r + p o : p l ; . . . ; p  
x F,+ s + qo: q1 ; ... ; 4; 

for p + s +  1 = q + r  (and O <  ts 1 ) ;  

p + l , c + p , a , : a , ; . . . ; a , ;  
p - m + 1, d + p, bo: b , ;  . . . ; b,; x1, ' * * 9 xfl 

~ l + r + p , : p , ;  ... ; p  
1 + s+ 40: 4 ,  ;, . ,; Q, 

(18) 

(19) 

for p + s + 1 = q + r (and 0 < t < 00); it being understood in every case that 

where the equality holds true when the variables t and xI, . . . , x, are appropriately 
constrained in accordance with (9) and (10). Furthermore, exceptional parameter 
values which would render either side invalid or undefined are tacitly excluded. Thus, 
for example, the expansion formula (16) remains valid also for t = 0, provided that 
Re(p)  > 0; on the other hand, when p in any of these expansion formulae takes on a 
non-negative integer value N, the right-hand side will have to be modified by a suitable 
limit process in order to (tacitly) avoid division by zero for the summation index (cf 
Srivastava and Panda 1976, p 142): 

1 + qo+ q k  - p o - p k  5 p - q k =  1 , .  . . , n 

m = N , N + I , N + 2 ,  . . .  N = 0 ,  1 ,2  ,... . (20) 
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Each of our expansion formulae (16)-( 18), and their various specialised or limiting 
cases, can be applied to derive scores of linearisation relations analogous to ( 3 )  and 
(4) for the products of several generalised hypergeometric polynomials of the types 
defined by (12)-( 14). In particular, for the classical Jacobi polynomials P',*,p'(x), the 
expansion formula (16) with 

A = a + P + l  

bi  = a k  + 1 

p = q = p o =  qo= r -  1 = s = 0 c ' = a + f  

P k  - 1 = q k  = 1 a ;  = -mk a:= a k  + P k  + mk+ 1 

k = l , .  . , , n 

yields the following linearisation relation of the Clebsch-Gordan type (3): 

tV',*q''@J(l - 2x,  t )  . . . P',q/IJ( 1 - 2x , t )  

F 2 : 2 :  .,;*( p + 1, a + p  + 1: -ml ,  a l + P I +  m l +  1; .  . . ; 
a l + l ;  . . . ;  p - m+ 1, a+@ + p  + m+2: 2:1; ... ; I  

- m n ,  a , + ~ , + m , + l ;  
CY, + 1 ;  

In a similar manner, if we apply the definition of the classical Laguerre polynomials 
L p ' ( x ) ,  the expansion formula (17) with 

p = q = po = qo = r - 1 = s = 0 c 1 = a + 1  

b: = (Yk + 1 P k  = q k  = a: = -mk k =  1, .  . . , n 

would reduce to the linearisation relation: 

t ' lL',*;)(xlt) .  . * L',*;'(x,t) 

p + l , a + p + l :  - m l ; . . . ;  - m n ;  
p - m + l :  a l + l ; . . . ;  cun+l; XI , * . * , x, 

which is also of the Clebsch-Gordan type (3). 
The multivariable hypergeometric polynomials involved in the coefficients of each 

of the (Clebsch-Gordan type) linearisation relations (21) and (22) can easily be 
rewritten in descending powers of xl, . . . , x,. Notice also that, in view of a familiar 
limit relationship (cf Szego 1975, p 103, equation (5.3.4)), the linearisation relation 
(22) would follow directly from (21) when we replace t by t / P ,  and xk by 
(k  = 1, .  . . , n )  and let p, P I , .  . . , p n  +CO. More importantly, since 

m , M = 0 , 1 , 2  ,... (23) 
a + p + M + 1, -m; ( -p)m(p + 1 ) ~  

(a + l ) m ( p  - m+ l )M 

by the Chu-Vandermonde theorem, which is a well known special case of the Gaussian 
summation theorem (cf Srivastava and Karlsson 1985, p 19, equation 1.2(20)), it is 



4468 H M Srivastava 

not difficult to rewrite the linearisation relation (22) in the elegant form: 
m 

t % ( , ; ) ( x , t ) .  . . L t ; ) ( x , t )  = c y m ( p ;  X I , .  . . , x, )L ‘ , ) ( t )  (24) 
m = O  

where, for convenience, 

x Fkntl)[a + p + 1,  -m, ,  . . . , -m,, -m; 

a ,  + 1 , .  . . , a,  + 1, a + 1; x l , .  . . , x,,  11 (25) 
in terms of one of Lauricella’s hypergeometric functions of n + 1 variables (e.g. Srivas- 
tava and Karlsson 1985, p 33, equation 1.4(1)). 

The linearisation relation (22) corresponding to the restricted product in ( 5 )  was 
given by Niukkanen (1985). On the other hand, the equivalent expansion (24) with 
p = 0 immediately yields the following result due to ErdClyi (1938): 

~ ( , q ” ( x , t ) .  . . L‘,q:)(x,t) 

x F$+l)[a + 1, -m, ,  . . . , -m,, -m; 

a I  + 1 , .  . . , a, + 1, a + 1; x l , .  . . , x,,  11 (26) 
which has since been reproduced (with proper credits) in numerous subsequent works. 

We should like to mention here that ErdClyi’s linearisation relation (26) can be 
extended fairly easily to an expansion (or multiplication) theorem for a class of 
multivariable hypergeometric polynomials in the form: 

which is derivable from a more general result involving the generalised Lauricella 
function (cf Srivastava 1971, p 114; see also Srivastava and Manocha 1984, p 262, 
problem 5) .  As a matter of fact, in view of the hypergeometric identity (23), this last 
result (27) corresponds to an obvious (terminating) version of the special case p = 0 
of the following consequence of our expansion formula (17): 

which evidently holds true for an essentially arbitrary parameter p. 
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3. Concluding remarks and observations 

We should like to remark that the literature contains a wide variety of addition theorems 
for various special functions (e.g. Srivastava et a1 1983). In the case of the classical 
Laguerre polynomials, a few of the available addition theorems were discussed by 
Niukkanen (1985). A particularly elegant result for these polynomials is the following 
addition theorem of Srivastava (1972, p 6,  equation ( 1 0 ) ) :  

LE'( X )  L',p'(y) 

where, for convenience, 

-s, a - y, - p  - r - s ;  
a + r + l ,  y - P - s f l ;  5 r s  = 3F2 

It may be of interest to observe from (30)  that trs = 1 when y = a, and thus (29)  reduces 
immediately to the significantly simpler form: 

whose special case when p = a  would yield one of several such addition theorems 
considered extensively by Bailey (1936, p 219, equation (5.4); 1939, p 60, equation ( 1 . 1 ) ) .  

By Kummer's first formula (cf Srivastava and Karlsson 1985, p 322, equation 
9.4( 183)), the standard confluent hypergeometric lFl representation for the Laguerre 
polynomials L',"'(x) may be rewritten at once as 

Now make use of (32 )  in an expansion formula recorded already by Srivastava (1985a, 
p L230, equation (20 ) )  which indeed follows readily from a more general result due 
to Srivastava and Daoust (1969, p 456, equation (4.3)). We thus obtain the following 
linearisation relation for the Laguerre polynomials: 

Ljn4l)(x1t) . * . L:;p'(X,t) 

a1 + m1 =( m l  ) exp[-(x-x,-  . . . -  x , ) t ]  

where, for convenience, 

M = m1 + . . . + m, s = a,+. . .+ a,  - a  + 1 
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(Y being so constrained that s is a non-negative integer. Formula (33) with n = 2 would 
provide the corrected (and modified) version of a result proved, in a markedly different 
and involved manner, by Niukkanen (1985, p 1413, equation (48)). In fact, Niukkanen's 
error can be traced back to the missing factor ( $ ~ ) ' - ~ l - ~  2 on the left-hand side of a 
well known result reproduced and used incorrectly by him (cf Niukkanen 1985, p 1412, 
equation (47)). 

Formula (33) with 

x = x , + .  . .+x,  

would immediately yield a class of addition theorems for Laguerre polynomials, which 
(for n = 2) would correspond essentially to the corrected version of another known 
result (Niukkanen 1985, p 1414, equation (52)). 

A number of further applications of each one of the expansion (or multiplication) 
formulae and linearisation relations presented in this paper to various other families 
of orthogonal polynomials (or to simpler special functions of one and more variables) 
can indeed be given in a manner outlined above fairly adequately. Moreover, these 
multivariable polynomial expansions are also capable of yielding various desired 
linearisation relations of the modiJied Clebsch-Gordan type (4) for each of the classical 
orthogonal polynomials named in 0 1,  as well as for numerous other hypergeometric 
polynomials of the types considered in this paper. 
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